Invariant measure for 2D stochastic Cahn-Hilliard-Navier-Stokes equations

نویسندگان

چکیده

In this paper, we investigate the stochastic Cahn–Hilliard–Navier–Stokes equations in two-dimensional spaces. Applying Maslowski–Seidler method, establish existence of invariant measure state space [Formula: see text] with weak topology. We also prove global pathwise solutions using compactness argument.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.

We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short tim...

متن کامل

Measure Attractors for Stochastic Navier–stokes Equations

We show existence of measure attractors for 2-D stochastic Navier-Stokes equations with general multiplicative noise.

متن کامل

Anticipating Stochastic 2D Navier-Stokes Equations

In this article, we consider the two-dimensional stochastic Navier-Stokes equation (SNSE) on a smooth bounded domain, driven by affine-linear multiplicative white noise and with random initial conditions and Dirichlet boundary conditions. The random initial condition is allowed to anticipate the forcing noise. Our main objective is to prove the existence and uniqueness of the solution to the SN...

متن کامل

Dynamics of stochastic 2D Navier–Stokes equations

In this paper, we study the dynamics of a two-dimensional stochastic Navier-Stokes equation on a smooth domain, driven by multiplicative white noise. We show that solutions of the 2D Navier-Stokes equation generate a perfect and locally compacting C1,1 cocycle. Using multiplicative ergodic theory techniques, we establish the existence of a discrete non-random Lyapunov spectrum for the cocycle. ...

متن کامل

Exponential Ergodicity for Stochastic Burgers and 2d Navier-stokes Equations

It is shown that transition measures of the stochastic Navier-Stokes equation in 2D converge exponentially fast to the corresponding invariant measures in the distance of total variation. As a corollary we obtain the existence of spectral gap for a related semigroup obtained by a sort of ground state trasformation. Analogous results are proved for the stochastic Burgers equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastics and Dynamics

سال: 2023

ISSN: ['0219-4937', '1793-6799']

DOI: https://doi.org/10.1142/s0219493723500302